JO₂F₃, seine Struktur und F-Ionen-Akzeptor-Eigenschaften

Von

A. Engelbrecht, O. Mayr, G. Ziller und E. Schandara*

Aus dem Institut für Anorganische und Analytische Chemie der Universität Innsbruck, Österreich

Mit 3 Abbildungen

(Eingegangen am 10. Mai 1974)

Structure and F Ion Acceptor Properties of IO₂F₃

 IO_2F_3 , originally assumed to have a trigonal bipyramidal structure, is polymeric. Mass spectra confirm the existence of molecules with molecular weights up to three times the formula weight. Chemically, IO_2F_3 is a strong Lewis acid and fluorine ion acceptor, thus forming the anion $IO_2F_4^-$. With SbF_5 it forms a further polymeric compound $(IO_2F_3 \cdot SbF_5)_n$. ¹⁹F-NMR, mass, IR and Raman spectra confirm the proposed structures.

Allgemeines

Joddioxid-trifluorid wurde ursprünglich als in zwei nebeneinander vorliegenden, isomeren Formen beschrieben¹, wobei — unter Annahme einer trigonal-bipyramidalen Grundstruktur — das ¹⁹F-NMR-Spektrum dahingehend gedeutet wurde, daß es die Multipletts sowohl des C_{2v} - als auch Cs-Isomeren zeigt. Wie sich jedoch später erwies, war jener Teil des Spektrums, der als C_s-Isomeres angesprochen wurde, auf eine Verunreinigung mit Tetrafluoro-orthoperjodsäure zurückzuführen, welche als solche nicht erkannt wurde, weil das bei niederer Feldstärke liegende Triplett des A_2B_2 -Spinsystems in überschüssigem IO_2F_3 bei beträchtlich niedrigerem Feld liegt als in reiner HOJOF₄². Synthetisch erzeugte Gemische der beiden Verbindungen bestätigten diesen großen Lösungsmitteleffekt im Spektrum von HOJOF₄, der auch sehr deutlich in Lösungen von $HOJOF_4$ in Gemischen von $HSO_3F + CH_3COOH$ auftritt. So wird das bei niederem Feld liegende Triplett des A_2B_2 -Spinsystems in reinem Eisessig um fast 20 ppm gegenüber reiner HSO₃F-Lösung verschoben, auf das Doppelte des Unterschiedes in der chemischen Verschiebung gegenüber dem Triplett bei höherem Feld, das

^{*} Herrn Prof. Dr. E. Hayek zum 70. Geburtstag gewidmet.

praktisch keinen Lösungsmitteleffekt zeigt³. Interessanterweise ist die Richtung dieses Effektes genau umgekehrt, wie man von einem Übergang von $\text{HO} \cdot \text{JOF}_4$ (in HSO_3F) zu $\text{OJOF}_4^{(-)}$ (in Eisessig als Protonenakzeptor) erwarten würde⁴.

Nachdem es uns durch fraktionierte Destillation einer größeren Menge JO_2F_3 gelungen war, die Substanz in hohem Reinheitsgrad herzustellen, sollte versucht werden, mit Hilfe der Schwingungsspektroskopie eine Entscheidung über die genaue Struktur zu fällen.

Grundsätzlich sind von einer monomeren Verbindung der allgemeinen Formel ML_2L_3' sechs isomere Formen denkbar, wobei sich je drei von der trigonalen Bipyramide (D_{3h}, C_{2v}, C_s) bzw. tetragonalen Pyramide (C_{2v}, 2mal C_s) ableiten lassen. Von diesen wird für das JO₂F₄ durch das ¹⁹F-Resonanzspektrum, das ein AB_2 -Spinsystem zeigt, nur die D_{3h}-Form ausgeschlossen. Andererseits zeigt dieses Spektrum, daß bei Zimmertemperatur kein inter- bzw. intramolekularer Ligandenaustausch stattfindet, wie das bei sehr vielen anderen fünffach-koordinierten Verbindungen der Fall ist⁵.

Die IR- und Raman-Spektren von JO_2F_3 ergaben jedoch die zunächst nicht erwartete Situation, daß in allen Spektren, auch bei optimaler Auflösung ($\pm 1 \text{ cm}^{-1}$), nur eine Jod—Sauerstoff-Schwingung im Doppelbindungsbereich gefunden wurde, obwohl für eine monomere Form des JO_2F_3 sowohl eine symmetrische als auch unsymmetrische Valenzschwingung O=J=O zu erwarten gewesen wären. Nachdem trotz eingehender Suche keine zwei Banden gefunden werden konnten, welche im geforderten Frequenzbereich lagen, blieb nur die Erklärung, daß JO_2F_3 nicht monomer, sondern dimer (oder noch höher polymer) vorliegt.

Eine Neuaufnahme des Massenspektrums bei möglichst niederer Anregungsenergie (25 eV) bestätigte dann auch diese Vermutung, da Ionenmassen bis zum Dreifachen des Formelgewichtes auftraten, wodurch die, zumindest teilweise, polymere Struktur von JO_2F_3 sichergestellt war (Tab. 1).

Die Resultate der Schwingungsspektroskopie, zusammen mit den ¹⁹F-NMR-Spektren, beschränken jedoch die Verknüpfungsmöglichkeiten auf *cis*-ständige Sauerstoffbrücken, wie sie übrigens auch in einer soeben erschienenen Arbeit einer englischen Forschergruppe auf Grund von Gasdichtemessungen und Analyse eines hochauflösenden ¹⁹F-NMR-Spektrums für JO₂F₃ postuliert wird⁶.

Dieses Resultat ist deshalb besonders interessant, weil JO_2F_3 , im Gegensatz zum isoelektronischen SbF₅, dessen polymere Struktur ja schon länger bekannt war⁷, einen sehr scharfen Schmelzpunkt zeigt (+ 42,5°), im geschmolzenen Zustand relativ geringe Viskosität und auch bei Raumtemperatur einen beträchtlichen Dampfdruck aufweist. A. Engelbrecht u. a.:

Die gegenüber SbF₅ sehr geringe Viskosität von flüssigem $(JO_2F_3)_n$ muß wohl auf einen relativ geringen Polymerisationsgrad $(n \leq 4)$ bzw. sehr kleine Dipolmomente der vorliegenden Moleküle zurückgeführt werden.

Das ebenfalls mit JO_2F_3 und SbF_5 isoelektronische "OTe F_4 " ist entweder polymer unter Ausbildung längerer Ketten⁸, oder, wie vor kurzem gezeigt wurde, dimer, mit "*cis*" stehenden Sauerstoffbrücken⁹.

m/e	Zuordnung ($M = { m JO}_2{ m F}_3$)	relat. Intensität ($M_2 = 100$)
632	<i>M</i> ₃ 0	1
629	M_3 —F	7
613	M_3 —OF	40
610	M_3 —2 F	7
432	M_2	100
416	M_2 —O	5
413	M_2 —F	25
397	$\overline{M_2}$ -OF	30
394	$\overline{M_2}$ —2 F	7
381	M_2 —O $_2$ F	100
362	M_2 —O $_2$ F $_2$	5
359	M_2 —OF ₃	2
236	$HOJOF_4$	15
235	$ m JO_2F_4$	30
222	${ m JF}_5$	15
219	JOF_4	20
216	$ m JO_2F_3$	100
203	$\mathbf{JF_4}$	40
200	${ m JOF_3}$	100

Tabelle 1. Massenspektrum $(JO_2F_3)_n$ (oberer Bereich), Anregungsenergie 25 eV, etwa 0 °C

JO₂F₃ als Fluorionen-Akzeptor

$JO_2F_3 + HF (MF)$

Wie bereits berichtet wurde¹, reagiert JO_2F_3 mit Fluorwasserstoff zu HOJOF₄. Diese Reaktion ist relativ langsam (Grammengen von JO_2F_3 in überschüss. HF verlangen zur vollständigen Reaktion bei Raumtemp. mehrere Stunden), was sicher auf die nun erwiesene polymere Struktur des JO_2F_3 zurückzuführen ist.

Bringt man Alkalifluoride, in HF gelöst, zur Reaktion, entstehen die entsprechenden Salze der Tetrafluor-orthoperjodsäure. Cäsiumfluorid, einmal direkt mit JO_2F_3 in der Trockenbox verrieben, reagierte allerdings explosionsartig, größtenteils unter Zersetzung der Jodverbindung¹⁰.

Abb. 1. ¹⁹F-NMR-Spektrum $(JO_2F_3 \cdot SbF_5)_n$

 $JO_2F_3 + JOF_3$

Bei der photochemischen Zersetzung von JO_2F_3 entsteht das bereits bekannte JOF_3^{11} , dessen Verhalten gegenüber überschüssigem JO_2F_3 zeigt, daß es als Fluorionen-Donor wirkt:

$$JO_2F_3 + JOF_3 = JOF_2^+ + JO_2F_4^-$$

Das ¹⁹F-NMR-Spektrum zeigt eindeutig die vom Anion $JO_2F_4^-$ bekannten Multipletts sowie das dem JOF_2^+ zuzuordnende Singlett mit

m/e	Zuordnung	relat. Intensität $({M}_{432}=100)$
849	$(JO_2F_3 \cdot {}^{123}SbF_5)_2 - F$	1
847	$(JO_2F_3)2^{120}SDF_5 \cdot 1^{21}SDF_5 - F$	3
650)	(0.0213)0015)21	24
648	$(\mathrm{JO}_2\mathrm{F}_3)_2\cdot\mathrm{SbF}_5$	33
633	$(JO_2F_3 \cdot SbF_5) + SbF_4$	50
631)	$(IO_2F_2 \cdot SbF_2) \perp IO_2F_2$	100
629	$(3O_2F_3 + 3DF_5) + 3O_2F_2$	100
434^{-1}	$ m JO_2F_3\cdot {}^{123} m SbF_5$	72
432	$ m JO_2F_3\cdot {}^{121}SbF_5$	100
		relat. Intensität
m/e	Zuordnung	$\begin{array}{r} {}^{123}{\rm SbF_4}(m/e=199)\\ =100 \end{array}$
415		100
413	$(\mathrm{JO}_2\mathrm{F}_3\cdot\mathrm{SbF}_5)$ —F	100
377	(IOF SHE) 9E	3
375	$(3O_2F_3 \cdot SDF_5) = 3F$	4
358	$(\mathbf{IO}, \mathbf{F}, \mathbf{S}, \mathbf{S}, \mathbf{F}) = \mathbf{A} \mathbf{F}$	2
356	(JU2F3 · SDF5)—4 F	3
254	J_2^+	100
238	JOF_5	3
237	$^{123}\mathrm{SbF_{6}}$	1
236	$HOJOF_4$	30
235	121 SbF ₆ , JO ₂ F ₄	5
219	JOF_4	19
216	JO ₂ F ₃	100
215 213	123 SbOF ₄ 121 SbOF ₄	4 5
······		relat. Intensität
<i>m</i> /e	Zuoranung	= 100
203	JF_4	100
200	${ m JOF_3}$	100
199]	ShE	100
197)	JO_2F_2	100
196]	ShOF.	3
194∫		8
184	JE3	80
181	$\rm JOF_2$	100
1780	SbF ₃ TO E	14
178]	- JU2t	00

Tabelle 2. Massenspektrum $(JO_2F_3 \cdot SbF_5)_n$, Anregungsenergie 50 eV, 40 °C

m/e	Zuordnung	rel. Intensität $^{123}{ m SbF_4} (m/e = 199)$ = 100
165	$_{ m JF_2}$	100
162	JOF	100
161)	(1) T3	22
159	$^{ m SbF_2}$ JO ₂	100
146	JF	100
143	$_{ m JO}$	80
127	1	100
123	^{123}Sb	1
121	$^{121}\mathrm{Sb}$	2

Tabelle 2 (Fortsetzung)

einer chemischen Verschiebung, wie sie für das an 5wertiges Jod gebundene Fluor zu erwarten ist¹² (Tab. 4).

$\rm JO_2F_3 + SbF_5$

Die Frage, wie sich JO_2F_3 gegenüber SbF_5 , dem stärksten bekannten Fluorionen-Akzeptor, verhält, schien uns untersuchenswert. Kondensiert man die beiden Substanzen miteinander, entsteht bei Überschuß SbF_5 eine farblose, bei Überschuß JO_2F_3 eine gelbliche Lösung, aus der beim Absublimieren der Überschußverbindung eine weiße Festsubstanz der Zusammensetzung $JO_2F_3 \cdot SbF_5$ kristallisiert. Die Verbindung schmilzt bei etwa 102° und neigt sehr stark zur Bildung unterkühlter Schmelzen. Das ¹⁹F-NMR-Spektrum dieser Schmelzen zeigt sowohl im Jod- als auch Antimon-Teil ein A_2B_2 -Spinsystem neben einem Singlett (Abb. 1, Tab. 2). Das Massenspektrum beweist auch für diese Verbindung eine polymere Struktur, wobei die schwersten Bruchstücke auf Molekülgrößen von zumindest ($JO_2F_3 \cdot SbF_5$)₂ hinweisen.

Diese Befunde sind zu verstehen, wenn man annimmt, daß —OJF₄mit —OSbF₄-Einheiten zu Ketten oder Ringen verbunden sind, wobei beide Elemente die für sie günstigste sechsfach-Koordination erreichen. Eine weitere Bestätigung dieser Interpretation liefert die Ähnlichkeit der Kopplungskonstante $J_{\rm FF}$ der *cis*-OSbF₄-Einheiten (124 Hz) mit denen von SbF₄OSO₂F (128 Hz)¹³ und SbF₅ (130 Hz)¹⁴, Verbindungen, für die ebenfalls polymere Struktur angenommen wird. Auch die relative chemische Verschiebung zwischen den nicht äquivalenten Fluoratomen an *cis*-OSbF₄-Einheiten von 27,5 ppm liegt nahe den entsprechenden Werten für SbF₄OSO₂F (30,3 ppm) und SbF₅ (26,0 ppm).

Infrarot-Spektren

Es wurden sowohl Gas-Spektren als auch Spektren von festem JO_2F_3 in Substanz sowie in einer Xenon-Matrix aufgenommen. Die große chemische Reaktivität der Substanz erzwang die Verwendung von

Abb. 2. IR-Spektrum von JO_2F_3 (Xenon-Matrix, 1: 2000, - 198°)

Abb. 3. Raman-Spektrum von JO₂F₃ (flüssig, 52°)

AgCl-Fenster-Material, wodurch der langwellige Bereich unter 370 cm⁻¹ nicht beobachtet werden konnte. Die Lichtempfindlichkeit des JO_2F_3 , besonders in der Gasphase, verlangte hiebei weitgehende Manipulation im Dunkeln. Xenon wurde als Matrix-Substanz gewählt, weil es die einzige bei den von uns erreichbaren Temperaturen (fester Stickstoff, -- 210 °C) genügend inerte Substanz war. Das Verhältnis JO_2F_3 : Xenon wurde zwischen 1 : 500 und 1 : 5000 variiert, jedoch ohne nennenswerte Unterschiede in den Spektren zu ergeben. Die Aufnahmen wurden mit einem Perkin-Elmer-Spektrometer, Modell 457, aufgenommen. Alle Apparateteile im Kontakt mit JO_2F_3 waren fest verschmolzen. Es wurden nur Glashähne mit Teflonküken ohne Hahnfett verwendet.

Gas-Spektren von JO_2F_3 wurden in derselben Zelle, jedoch ohne den Mittelteil mit Kühlfinger aufgenommen. Die Zelle wurde mehrmals mit JO_2F_3 konditioniert, um gute Spektren zu ergeben (Abb. 2).

Ramanspektren

Die Aufnahmen wurden mit einem photoelektrischen Spektrometer Coderg PHO aufgenommen. Als Erregerlinie dienten die Linien bei 568 nm und 647 nm eines Ar/Kr-Modell 52-Lasers von Coherent Radiation Laboratories.

Es wurden Spektren von flüssigem JO_2F_3 , festem JO_2F_3 bei 25 °C und festem JO_2F_3 bei — 196° aufgenommen (Abb. 3). Ein Gasspektrum konnte wegen des geringen Dampfdruckes von JO_2F_3 nicht erhalten werden.

Das Ramanspektrum von flüssigem JO_2F_3 wurde in der mit einem Föhn beheizten Vorratsampulle bzw. NMR-Röhrchen aufgenommen. Für die Spektren in fester Phase wurde JO_2F_3 in eine Schmelzpunktskapillare einkondensiert. Zur Aufnahme des Spektrums bei — 196 °C wurde die serienmäßige Tieftemperatureinheit der Fa. Coderg verwendet.

Je nach Menge der untersuchten Substanz konnte eine spektrale Spaltbreite von bis zu besser als 1 cm⁻¹ verwendet werden. Die Ramanfrequenzen dürften auf ± 0.5 cm⁻¹ genau sein. Die Polarisationsmessungen wurden mit einem Analysator vor dem Eingangsspalt durchgeführt. Maximales Depolarisationsverhältnis ist dann 0,75. Die Depolarisationsverhältnisse sind auf $\pm 5\%$ genau und wurden an der Bande von 762/791 cm⁻¹ von CCl₄ verifiziert. In allen Messungen wurde 90°-Geometrie verwendet. Durch Öffnen der Spaltbreite war es möglich, Ramanbanden bis zu einer Intensität von 0,001 der Intensität der stärksten Bande aufzunehmen.

Eine Unterscheidung zwischen den von *Beattie* und *Van Schalkwyk*⁶ vorgeschlagenen Basiseinheiten mit dem doppeltgebundenen Sauerstoff *in* bzw. *senkrecht zur* Brückenbindungsebene konnte auf Grund dieser Spektren nicht eindeutig gefällt werden. Tab. 3 enthält die Resultate dieser spektroskopischen Untersuchung.

Von den beobachteten Frequenzen kann mit Sicherheit nur die J=O-Schwingung zugeordnet werden, welche je nach Zustand der Probe zwischen 912 und 916 cm⁻¹ beobachtet wird. Im OJF_5 liegt¹⁵ diese Schwingung bei 927 cm⁻¹. Eine sichere Zuordnung der anderen Frequenzen scheint uns nun nicht mehr möglich, vor allem deshalb, weil die

A. Engelbrecht u. a.:

Tabelle 3. Schwingungsspektren des $(JO_2F_3)_n$.

Intensitäten:	vs = sehr	stark,	s = stark,	m = mittel,	w = schwach
	$\mathbf{p} = \mathbf{p}$	olarisie	rt, dp = dep	olarisiert	

Infrarot			Raman			
Gas	Fest (~	~ <u>— 200°</u>)	Fe	est	flüssig	
	Matrix	rein	— 196°	20 °C		
915	$912 \mathrm{~w~sh}$	914	913 s 911 wsh	916 s 911 wsh	916 sp	
890 m	$875 \mathrm{~m~br}$	885 w sh 869 w 840 vw				
	820 vw 800 vw 742 m	815 m 790 w sh 740 w			811 vw	
730 w	$\begin{array}{l} 710 {\rm w} {\rm sh} \\ 696 {\rm w} {\rm sh} \end{array}$	694 sh				
695 vs	$\begin{array}{c} 689 \text{ vs} \\ 685 \text{ s sh} \end{array}$	686 vs	686 w	$688 \mathrm{w}$	690 wp	
676 s	670 vs	672 vs 666 vs			671 vwdp	
	$663~{ m m}$	$663 \mathrm{~vs}$ $657 \mathrm{~s~sh}$	660 s	$661 \mathrm{s}$	663 sp	
658 vs	652 vs	653 vs 648 vs				
612 m	630 w sh 612 s	$628 \mathrm{~w~sh}$	627 vs 624 sh	629 vs	630 vsp	
605 m sh	600 s	600 s sh 582 w			$608 \mathrm{wp}$	
$570 \mathrm{w}$	$560~{ m m}$	$\begin{array}{c} 560 \text{ m} \\ 553 \text{ m} \end{array}$			572 vw	
	$545 \mathrm{~w~sh}$ $516 \mathrm{~w}$	541 m				
480 wsh	$482~{ m w}$ $458~{ m w}$	$480~{ m w~sh}$ $455~{ m w~sh}$				
425 w sh	428 w 418 sh 400 sh	430 m 420 s 300 yyy sh				
		380 m	376 m	$377 \mathrm{~m}$	$376 \mathrm{msh}\mathrm{p}$ $374 \mathrm{m}\mathrm{p}$	
		$368 \mathrm{~w~sh}$	$368~{ m m}$	369 m 355 wp	369 m dp 355 wp	
			$\begin{array}{c} 339 \ { m m} \\ 332 \ { m w} \end{array}$	$340~{ m m}$ $336~{ m w}$	$345 \mathrm{~mdp}$	
			278 w 269 vw 264 w	281 w 264 sh	$285 ext{ wdp}$	
			254 w 259 m 254 w	$\begin{array}{c} 264 \mathrm{~sn}\\ 260\\ 254 \mathrm{~wsh} \end{array}$	$261 \mathrm{~mp}$	

Tabelle	3	(Fortsetzung)
---------	---	---------------

Infrarot			Raman			
Gas	Fest ($\sim -200^{\circ}$)		Fest		flüssig	
	Matrix	rein	— 196°	20 °C		
					242 wp	
			$205~{ m s}$	$205 \mathrm{~s}$	$205 \mathrm{mp}$	
			194 w	$194 \mathrm{w}$	1	
					161 wdp	
					$155 \mathrm{wp}^{-1}$	
			111			
			105			
			100		103	
			93			
			90			
			84			
			77			

Tabelle 4. ¹⁹F-NMR-Spektren (56,4 MHz)

Substanz	Spin- System	$\begin{array}{c} \text{Chem} \\ \text{(relativ:} \\ A \end{array}$	Chem. Verschiebung (relativ zu FSO_3H extern) A B δ		Kopplgsk. $(J_{\rm FF}, { m Hz})$	R	
(JO ₂ F ₂) _n					8		
(25°)	AB_2	-27,5	66.6	-39.1	175	0.079	
HOJOF ₄ *	$A_2 B_2$	-46,7	-25,7	21	212	0.178	
(48°)	A_4	-26,6				, .	
$(JO_2F_3 \cdot SbF_5)_n$							
(25°)							
Jodteil	A_2B_2	-52,7	-32,5	20,2	228	0,20	
	A_4	-37,5					
Antimonteil	A_2B_2	+ 128,1	+ 155,6	27,5	124	0,080	
	A_4	+ 133					
$JO_2F_3 \cdot JOF_3*$							
(25°)							
Jv	A_2	+ 15					
JVII	A_2B_2	-51,7	-29,5	22,2	214	0,171	
	A_4	30					

* Gelöst in $FSO_3H = int. St.$

Temperaturabhängigkeit der Gasdichten, wie sie *Beattie* et al.⁶ festgestellt haben, als direkte Bestätigung gewertet werden muß, daß ein dynamisches Gleichgewicht zwischen monomeren und polymeren Formen existiert.

Kernresonanzspektren

Tab. 4 enthält eine Zusammenstellung der chemischen Verschiebungen und Kopplungskonstanten der diskutierten Verbindungen. Alle Spektren wurden mit einem 60 MHz-Gerät der Fa. Jeol durchgeführt.

Infrarot-, Raman- und Massenspektrometer sowie auch das NMR-Gerät stehen uns vom Fonds zur Förderung der Wissenschaftlichen Forschung zur Verfügung, wofür der Dank ausgesprochen wird.

Literatur

- ¹ A. Engelbrecht und P. Peterfy, Angew. Chem. **81**, 753 (1969); Angew. Chem., Internat. Edit. **8**, 768 (1969); A. Engelbrecht, P. Peterfy und E. Schandara, Z. anorg. allg. Chem. **384**, 202 (1971).
- ² A. Engelbrecht, 7. Internat. Symposium on Fluorine Chemistry, Santa Cruz, USA, Juli 1973.
- ³ A. Engelbrecht und E. Schandara, unveröffentlicht.
- ⁴ B. M. Rode, A. Engelbrecht und J. Schantl, Z. phys. Chemie [Leipzig] 253, 17 (1973); W. Porcham und A. Engelbrecht, Mh. Chem. 102, 1279 (1971).
- ⁵ P. Gillespie, P. Hoffman, H. Klusacek, D. Marquarding, S. Pfohl, F. Ramirez, E. A. Tsolis und I. Ugi, Angew. Chem., Internat. Edit. 10, 687 (1971); R. Schmutzler, Angew. Chem. 77, 530 (1965); E. L. Muetterties, W. Mahler, K.J. Packer und R. Schmutzler, Inorg. Chem. 3, 1298 (1964); E. L. Muetterties, W. Mahler und R. Schmutzler, Inorg. Chem. 2, 613 (1963).
- ⁶ I. R. Beattie und G. J. Van Schalkwyk, Inorg. Nucl. Chem. Letters 10, 343 (1974).
- ⁷ Ch. J. Hoffman, B. E. Holder und W. L. Jolly, Physic. Chem. **62**, 364 (1958).
- ⁸ F. Sladky, H. Kropshojer und O. Leitzke, Chem. Comm. 1973, 134.
- ⁹ K. Seppelt, Angew. Chem. 86, 104 (1974).
- ¹⁰ A. Engelbrecht und F. Sladky, unveröffentlicht.
- ¹¹ J. W. Viers und H. W. Baird, Chem. Comm. 1967, 1093.
- ¹² N. Bartlett, S. Beaton, L. W. Reevers und E. J. Wells, Canad. J. Chem. 42, 2531 (1964).
- ¹³ R. J. Gillespie und R. A. Rothenbury, Canad. J. Chem. 42, 416 (1964).
- ¹⁴ C. J. Hoffman, B. E. Holder und W. L. Jolly, J. Phys. Chem. 62, 364 (1958).
- ¹⁵ D. F. Smith und G. M. Begun, J. Chem. Phys. 43, 6 (1965).

Prof. Dr. A. Engelbrecht Institut für Anorganische und Analytische Chemie Universität Innsbruck Innrain 52a A-6020 Innsbruck Österreich